Exercise 1 Let the initial value problem,

$$
\left\{\begin{array}{l}
y^{\prime}(t)=f(t, y(t)), \quad t \in[a, b] \\
y(a)=y_{0} \in \mathbb{R}
\end{array}\right.
$$

where $f:[a, b] \times \mathbb{R} \rightarrow \mathbb{R}$ has the sufficiently regularity for its derivatives, i.e., every derivative of f that we may use, is bounded. Let $\left\{Y^{n}\right\}, n \geq 0$, the grid function that approximates $\left\{y\left(t^{n}\right)\right\}, n=0,1, \ldots, M, M \in \mathbb{N}$ and it produced from Runge-Kutta method of r stages, with fixed mesh step $h=\frac{b-a}{M}$, i.e.,

$$
\begin{aligned}
& Y^{0}:=y_{0} \\
& Y^{n, s}=Y^{n-1}+h \sum_{j=1}^{r} \lambda_{s j} f\left(t^{n, j}, Y^{n, j}\right), \quad 1 \leq s \leq r \\
& Y^{n}=Y^{n-1}+h \sum_{s=1}^{r} \alpha_{s} f\left(t^{n, s}, Y^{n, s}\right), \quad n=1,2, \ldots, M
\end{aligned}
$$

Prove that there exists a constant $C>0$, independent of h, such that
1.

$$
\max _{n, s}\left|y\left(t^{n, s}\right)-\xi^{n, s}\right| \leq C h
$$

2.

$$
\max _{n}\left|y\left(t^{n, s}\right)-\xi^{n, s}\right| \leq C h^{2} \Leftrightarrow \mu_{s}=\sum_{j=1}^{r} \lambda_{s j}, \quad \forall s=1, \ldots, r,
$$

where the grid functions for $s=1, \ldots, r,\left\{\xi^{n, s}\right\}, n=1, \ldots, M$, are defined as

$$
\xi^{n, s}=y\left(t^{n-1}\right)+h \sum_{j=1}^{r} \lambda_{s j} f\left(t^{n, j}, y\left(t^{n, j}\right)\right), \quad 1 \leq s \leq r
$$

Solution We may prove both 1., 2., simultaneously, i.e., let for all $s=1, \ldots, r$, subtract from $\xi^{n, s}$, the $y\left(t^{n, s}\right)$, to get

$$
\xi^{n, s}-y\left(t^{n, s}\right)=y\left(t^{n-1}\right)-y\left(t^{n, s}\right)+h \sum_{j=1}^{r} \lambda_{s j} f\left(t^{n, j}, y\left(t^{n, j}\right)\right), \quad 1 \leq s \leq r
$$

Then, from Taylor expansion and the definition of $t^{n, s}:=t^{n-1}+\mu_{s} h, s=1, \ldots, r$, we get

$$
\begin{aligned}
y\left(t^{n-1}\right)-y\left(t^{n, s}\right) & =y\left(t^{n-1}\right)-y\left(t^{n-1}+\mu_{s} h\right) \\
& =y\left(t^{n-1}\right)-\left(y\left(t^{n-1}\right)+h \mu_{s} y^{\prime}\left(t^{n-1}\right)+\frac{h^{2} \mu_{s}^{2}}{2!} y^{\prime \prime}\left(t^{n-1}\right)+\frac{h^{3} \mu_{s}^{3}}{3!} y^{\prime \prime \prime}(\tau)\right) \\
& =-h \mu_{s} y^{\prime}\left(t^{n-1}\right)-\frac{h^{2} \mu_{s}^{2}}{2!} y^{\prime \prime}\left(t^{n-1}\right)-\frac{h^{3} \mu_{s}^{3}}{3!} y^{\prime \prime \prime}(\tau), \quad \tau \in\left(t^{n-1}, t^{n, s}\right) .
\end{aligned}
$$

So,

$$
\xi^{n, s}-y\left(t^{n, s}\right)=-h \mu_{s} y^{\prime}\left(t^{n-1}\right)-\frac{h^{2} \mu_{s}^{2}}{2!} y^{\prime \prime}\left(t^{n-1}\right)-\frac{h^{3} \mu_{s}^{3}}{3!} y^{\prime \prime \prime}(\tau)+h \sum_{j=1}^{r} \lambda_{s j} f\left(t^{n, j}, y\left(t^{n, j}\right)\right), \quad 1 \leq s \leq r
$$

Noticing that for all $j=1, \ldots, r$,

$$
f\left(t^{n, j}, y\left(t^{n, j}\right)\right)=y^{\prime}\left(t^{n, j}\right)=y^{\prime}\left(t^{n-1}+\mu_{j} h\right)=y^{\prime}\left(t^{n-1}\right)+\mu_{j} h y^{\prime \prime}(\zeta), \quad \zeta \in\left(t^{n-1}, t^{n, j}\right)
$$

Therefore, for all $1 \leq s \leq r$,

$$
\begin{aligned}
\xi^{n, s}-y\left(t^{n, s}\right) & =-h \mu_{s} y^{\prime}\left(t^{n-1}\right)-\frac{h^{2} \mu_{s}^{2}}{2!} y^{\prime \prime}\left(t^{n-1}\right)-\frac{h^{3} \mu_{s}^{3}}{3!} y^{\prime \prime \prime}(\tau)+h \sum_{j=1}^{r}\left(\lambda_{s j} y^{\prime}\left(t^{n-1}\right)+\mu_{j} h y^{\prime \prime}(\zeta)\right) \\
& =h y^{\prime}\left(t^{n-1}\right)\left(\sum_{j=1}^{r} \lambda_{s j}-\mu_{s}\right)+\mathcal{O}\left(h^{2}\right)
\end{aligned}
$$

So, $\xi^{n, s}-y\left(t^{n, s}\right)=\mathcal{O}\left(h^{2}\right)$ if and only if $\mu_{s}=\sum_{j=1}^{r} \lambda_{s j}$. Since these identities holds for all s, n, we may conclude for the maximum.

Exercise 2 Let the initial value problem,

$$
\left\{\begin{array}{l}
y^{\prime}(t)=f(t, y(t)), \quad t \geq 0 \\
y(0)=y_{0} \in \mathbb{R}
\end{array}\right.
$$

where $f:[a, b] \times \mathbb{R} \rightarrow \mathbb{R}$ has the sufficiently regularity for its derivatives, i.e., every derivative of f that we may use, is bounded.

Prove that trapezoidal rule has order 2.
Solution Let $\left\{Y^{n}\right\}, n \geq 0$, the grid function that approximates $\left\{y\left(t^{n}\right)\right\}, n \geq 0$, and it produced from trapezoidal rule with fixed mesh step $h>0$, i.e.,

$$
Y^{0}:=y_{0}, \quad Y^{n}=Y^{n-1}+h \frac{1}{2} f\left(t^{n-1}, Y^{n-1}\right)+h \frac{1}{2} f\left(t^{n}, Y^{n}\right), \quad n \geq 1
$$

The truncation error T, that passes through the point (t, y) where y is the exact solution of IVP, is defined as

$$
T(t, y ; h):=\Phi(t, y ; h)-\frac{1}{h}(u(t+h)-u(t))
$$

where $u(t)$ is the reference solution that passes through the point (t, y), and defined as

$$
\left\{\begin{array}{l}
u^{\prime}(x)=f(x, u(x)), \quad x \in[t, t+h] \\
u(t)=y(t)
\end{array}\right.
$$

The increment function for a (r-stage) RKM with Butcher tableu

$$
\begin{array}{c|c}
\mu & \Lambda \\
\hline & \alpha^{T}
\end{array}
$$

where $\Lambda \in \mathbb{R}^{r, r}, \mu, \alpha \in \mathbb{R}^{r}$, is defined as

$$
\Phi(t, y ; h):=\sum_{s=1}^{r} \alpha_{s} k_{s}(t, y ; h), \quad \text { with } \quad k_{s}(t, y ; h):=f\left(t+\mu_{s} h, y+h \sum_{j=1}^{r} \lambda_{s j} k_{s}(t, y ; h)\right)
$$

Notice that the Butcher tableu of trapezoidal rule is

0	0	0
1	$\frac{1}{2}$	$\frac{1}{2}$
	$\frac{1}{2}$	$\frac{1}{2}$

so $r=2$ and

$$
\Phi(t, y ; h):=\frac{1}{2} k_{1}(t, y ; h)+\frac{1}{2} k_{2}(t, y ; h)
$$

with

$$
\begin{aligned}
& k_{1}(t, y ; h)=f(t, y) \\
& k_{2}(t, y ; h)=f\left(t+h, y+\frac{1}{2} h k_{1}+\frac{1}{2} h k_{2}\right) .
\end{aligned}
$$

A method is of $p \geq 1$ order if

$$
T(t, y ; h):=\tau(t, y) h^{p}+\mathcal{O}\left(h^{p+1}\right), \text { with } \tau(t, y) \neq 0
$$

To prove the second order accuracy for trapezoidal rule, first to simplify the notation let $f:=f(t, y), f_{t}:=$ $f_{t}(t, y), f_{y}:=f_{y}(t, y)$ and

$$
\begin{aligned}
& I_{1}=\Phi(t, y ; h) \\
& I_{2}=\frac{1}{h}(u(t+h)-u(t))
\end{aligned}
$$

For I_{1}, we need to expand it as $I_{1}=\tau_{1}+\mathcal{O}\left(h^{p}\right)$. So,

$$
I_{1}=\Phi(t, y ; h)=\frac{1}{2} k_{1}(t, y ; h)+\frac{1}{2} k_{2}(t, y ; h),
$$

with

$$
k_{1}(t, y ; h)=f
$$

and

$$
\begin{aligned}
k_{2}(t, y ; h)=f\left(t+h, y+\frac{1}{2} h k_{1}+\frac{1}{2} h k_{2}\right) & =f+h f_{t}+\frac{1}{2}\left(h k_{1}+h k_{2}\right) f_{y}+\mathcal{O}\left(h^{2}\right) \\
& =f+h f_{t}+\frac{1}{2}(h f+h(f+\mathcal{O}(h))) f_{y}+\mathcal{O}\left(h^{2}\right),
\end{aligned}
$$

were we have used the fact that $k_{1}=f$ and $k_{2}=f+\mathcal{O}(h)$, i.e., we expand again the k_{2} with Taylor. All in all,

$$
k_{2}(t, y ; h)=f+h f_{t}+h f_{y} f+\mathcal{O}\left(h^{2}\right),
$$

and therefore,

$$
I_{1}=\frac{1}{2} f+\frac{1}{2} f+h \frac{1}{2}\left(f_{t}+f_{y} f\right)+\mathcal{O}\left(h^{2}\right)
$$

For I_{2}, we need to expand it as $I_{2}=\tau_{2}+\mathcal{O}\left(h^{p+1}\right)$. So,

$$
\begin{aligned}
I_{2} & =\frac{1}{h}(u(t+h)-u(t))=\frac{1}{h}\left(u(t)+h u^{\prime}(t)+\frac{h^{2}}{2!} u^{\prime \prime}(t)+\frac{h^{3}}{3!} u^{\prime \prime \prime}(\xi)-u(t)\right) \\
& =u^{\prime}(t)+\frac{h}{2!} u^{\prime \prime}(t)+\frac{h^{2}}{3!} u^{\prime \prime \prime}(\xi),
\end{aligned}
$$

where $\xi \in(t, t+h)$. Notice, that

$$
\begin{aligned}
u^{\prime}(t) & =f(t, u(t))=f(t, y(t))=f \\
u^{\prime \prime}(t) & =\left(u^{\prime}(t)\right)^{\prime}=f_{t}+f_{y} f
\end{aligned}
$$

Thus,

$$
I_{2}=f+\frac{h}{2}\left(f_{t}+f_{y} f\right)+\mathcal{O}\left(h^{2}\right)
$$

Therefore,

$$
T(t, y ; h)=I_{1}-I_{2}=\mathcal{O}\left(h^{2}\right) .
$$

