Exercise 1 Let the initial value problem,
y'(t) = f(t,y(t), telab],
y(a) =yo R,

where f : [a,b] x R = R has the sufficiently reqularity for its derivatives, i.e., every derivative of f that we may
use, is bounded. Let {Y™}, n > 0, the grid function that approzimates {y(t™)}, n =10,1,...,M, M € N and it

produced from Runge-Kutta method of r—stages, with fixred mesh step h = b_wa, i.€e.,

YO =y,

YmE =y Y NG F(E Y™, 1< s <,
j=1

YP =Y R alf(E Y™, n=1,2,..., M,

s=1
Prove that there exists a constant C' > 0, independent of A, such that
1.

max |y(t™®) — £"°| < Ch.

s

max |y(t"%) — €| < Ch? & ps = E Asjs Vs=1,...,r,
n —
]_

where the grid functions for s = 1,...,r, {€™°}, n=1,..., M, are defined as

7 =y(t" ) + B> AGF(E™y(t™)), 1<s <,

j=1
Solution We may prove both 1.,2., simultaneously, i.e., let for all s =1,...,r, subtract from £™*, the y(t"*),
to get
EMF =yt ) = y(t" ) =yt ) + B> AGFE y(t), 1<s<r
j=1
Then, from Taylor expansion and the definition of ™% :=t"~! + u,h, s =1,...,7, we get
y(t" ) —y(t™*) = y(t" ") —y(t" " + p h)
h2 2 h3 3
= o) = (o) 4 b ) + e+ ) )
h2 2 h3 3
— *]’L,U,sy/(tnil) o 2:['Ls y//(tnfl) o 3/'% y///(T)7 = (tn717tn’s).
So,

n,s __ n,s _—h //gn—1 _h2ﬂ§ 1" (an—1 _hgﬂg’ " h - )\ . n,j n,j 1< <
€1 —y(t"7) = —hpusy/ ("1 = Py () = P (1) R Y A y(E)), 1< s <

j=1
Noticing that for all j =1,...,7,
FE2,y(t™7) =y (™) = y' ("7 i h) =y (") + i by (), (€ ()
Therefore, for all 1 < s <,
n,s n,s n— h2u3 n— h3u3 . n—
€ —y(t™*) = —hugy (" 1) = 2y (4 = =y () + h YAy () 4 1y by (),

2! 3!
j=1

=hy' (") | D Aej = p | +O(R).

Jj=1



So, £ —y(t™*) = O(h?) if and only if us = > j=1Asj- Since these identities holds for all s,n, we may conclude
for the maximum.

O

Exercise 2 Let the initial value problem,

y'(t) = f(t,y(t), t>0,
y(0) = yo € R,

where [ : [a,b] Xx R — R has the sufficiently regularity for its derivatives, i.e., every derivative of f that we may
use, is bounded.
Prove that trapezoidal rule has order 2.

Solution Let {Y"}, n > 0, the grid function that approximates {y(¢")}, n > 0, and it produced from trape-
zoidal rule with fixed mesh step h > 0, i.e.,

1 1
Y0 :i=yy, Y=Y 14 h§f(t”*1,Y“*1) + hif(t”,Y”), n> 1.
The truncation error T, that passes through the point (¢,y) where y is the exact solution of IVP, is defined as

Tty h) o= B(t,ys ) = 3 (ult + B) — u(t),

where u(t) is the reference solution that passes through the point (¢,y), and defined as

u'(z) = f(z,u(x)), x € [t,t+ h],
u(t) = y(t).

The increment function for a (r—stage) RKM with Butcher tableu
uwl A
o )

Oty h) =Y asks(t,ysh), with ko(tysh) = f(t+ psh,y+ 0> Akt y; ).
s=1 j=1

where A € R™" )y, € R", is defined as

Notice that the Butcher tableu of trapezoidal rule is

sor =2 and
1 1

O(t,y;h) = Ski(tysh) + Ska(t ys h),

with
1 1
kg(lf, Y, h) = f(t + h,y + Ehkl + 5hk2)
A method is of p > 1 order if
T(t,y;h) :=7(t,y)h* + (’)(hp+1), with 7(¢,y) # 0.

To prove the second order accuracy for trapezoidal rule, first to simplify the notation let f := f(¢,y), f: :=

fe(ty), fy = fy(t,y) and
I = ®(t,y; h)

I = (uft + 1) — u(?)).



For I7, we need to expand it as Iy = 71 + O(hP). So,
1 1
L= ®(ty;h) = Skt ysh) + Ska(t g ),
with

kl(tvy; h‘) =f

and
ka(t,y:h) = f(t + b,y + %hkl + %hkg) — f+hfi+ %(hkl + hky) £, + O(h?)
= F RSy 3 (hf +B(f + Oy +O()

were we have used the fact that k1 = f and ko = f 4+ O(h), i.e., we expand again the ko with Taylor. All in all,

ka(t,y;h) = f + hfs + hf, f + O(h?),

and therefore,
1 1 1 9
I, = if + §f + hi(ft + fyf) + O(h )

For I, we need to expand it as Iy = 75 + O(hPT1). So,

Thus,

b= T+ St ful) + O().
Therefore,

T(t,y;h) = I, — Iy = O(h?).



